Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Rep ; 14(1): 8926, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637558

ABSTRACT

To evaluate immune responses to COVID-19 vaccines in adults aged 50 years and older, spike protein (S)-specific antibody concentration, avidity, and function (via angiotensin-converting enzyme 2 (ACE2) inhibition surrogate neutralization and antibody dependent cellular phagocytosis (ADCP)), as well as S-specific T cells were quantified via activation induced marker (AIM) assay in response to two-dose series. Eighty-four adults were vaccinated with either: mRNA/mRNA (mRNA-1273 and/or BNT162b2); ChAdOx1-S/mRNA; or ChAdOx1-S/ChAdOx1-S. Anti-S IgG concentrations, ADCP scores and ACE2 inhibiting antibody concentrations were highest at one-month post-second dose and declined by four-months post-second dose for all groups. mRNA/mRNA and ChAdOx1-S/mRNA schedules had significantly higher antibody responses than ChAdOx1-S/ChAdOx1-S. CD8+ T-cell responses one-month post-second dose were associated with increased ACE2 surrogate neutralization. Antibody avidity (total relative avidity index) did not change between one-month and four-months post-second dose and did not significantly differ between groups by four-months post-second dose. In determining COVID-19 correlates of protection, a measure that considers both antibody concentration and avidity should be considered.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Middle Aged , Aged , Angiotensin-Converting Enzyme 2 , BNT162 Vaccine , Prospective Studies , COVID-19/prevention & control , Canada/epidemiology , Antibodies , ChAdOx1 nCoV-19 , RNA, Messenger , Antibodies, Viral , Vaccination
2.
BMC Infect Dis ; 24(1): 91, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225625

ABSTRACT

BACKGROUND AND OBJECTIVES: Pediatric COVID-19 cases are often mild or asymptomatic, which has complicated estimations of disease burden using existing testing practices. We aimed to determine the age-specific population seropositivity and risk factors of SARS-CoV-2 seropositivity among children and young adults during the pandemic in British Columbia (BC). METHODS: We conducted two cross-sectional serosurveys: phase 1 enrolled children and adults < 25 years between November 2020-May 2021 and phase 2 enrolled children < 10 years between June 2021-May 2022 in BC. Participants completed electronic surveys and self-collected finger-prick dried blood spot (DBS) samples. Samples were tested for immunoglobulin G antibodies against ancestral spike protein (S). Descriptive statistics from survey data were reported and two multivariable analyses were conducted to evaluate factors associated with seropositivity. RESULTS: A total of 2864 participants were enrolled, of which 95/2167 (4.4%) participants were S-seropositive in phase 1 across all ages, and 61/697 (8.8%) unvaccinated children aged under ten years were S-seropositive in phase 2. Overall, South Asian participants had a higher seropositivity than other ethnicities (13.5% vs. 5.2%). Of 156 seropositive participants in both phases, 120 had no prior positive SARS-CoV-2 test. Young infants and young adults had the highest reported seropositivity rates (7.0% and 7.2% respectively vs. 3.0-5.6% across other age groups). CONCLUSIONS: SARS-CoV-2 seropositivity among unvaccinated children and young adults was low in May 2022, and South Asians were disproportionately infected. This work demonstrates the need for improved diagnostics and reporting strategies that account for age-specific differences in pandemic dynamics and acceptability of testing mechanisms.


Subject(s)
COVID-19 , 60539 , Child , Humans , Infant , Young Adult , Antibodies, Viral , Asian People , COVID-19/epidemiology , Cross-Sectional Studies , Immunoglobulin G , Seroepidemiologic Studies , British Columbia/epidemiology
4.
Front Immunol ; 13: 899161, 2022.
Article in English | MEDLINE | ID: mdl-35677057

ABSTRACT

Helicobacter pylori infects the gastric mucosa of a large number of humans. Although asymptomatic in the vast majority of cases, H pylori infection can lead to the development of peptic ulcers gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Using a variety of mechanisms, H pylori locally suppresses the function of the host immune system to establish chronic infection. Systemic immunomodulation has been observed in both clinical and pre-clinical studies, which have demonstrated that H pylori infection is associated with reduced incidence of inflammatory diseases, such as asthma and Crohn's disease. The introduction of immunotherapies in the arsenal of anti-cancer drugs has revealed a new facet of H pylori-induced immune suppression. In this review, we will describe the intimate interactions between H pylori and its host, and formulate hypothtyeses describing the detrimental impact of H pylori infection on the efficacy of cancer immunotherapies.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Lymphoma, B-Cell, Marginal Zone , Gastric Mucosa , Helicobacter Infections/complications , Humans , Immunotherapy/adverse effects , Lymphoma, B-Cell, Marginal Zone/pathology
5.
Microbiol Spectr ; 10(2): e0140521, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35266818

ABSTRACT

We investigate the diagnostic accuracy and predictive value of finger prick capillary dried blood spot (DBS) samples tested by a quantitative multiplex anti-immunoglobulin G (IgG) assay to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies after infection or vaccination. This cross-sectional study involved participants (n = 6,841) from several serological surveys conducted in nonhospitalized children and adults throughout 2020 and 2021 in British Columbia (BC), Canada. Analysis used paired DBS and serum samples from a subset of participants (n = 642) prior to vaccination to establish signal thresholds and calculate diagnostic accuracy by logistic regression. Discrimination of the logistic regression model was assessed by receiver operator curve (ROC) analysis in an n = 2,000 bootstrap of the paired sample (n = 642). The model was cross-validated in a subset of vaccinated persons (n = 90). Unpaired DBS samples (n = 6,723) were used to evaluate anti-IgG signal distributions. In comparison to paired serum, DBS samples from an unvaccinated population possessed a sensitivity of 79% (95% confidence interval [95% CI]: 58 to 91%) and specificity of 97% (95% CI: 95 to 98%). ROC analysis found that DBS samples accurately classify SARS-CoV-2 seroconversion at an 88% percent rate (area under the curve [AUC] = 88% [95% CI: 80 to 95%]). In coronavirus disease 2019 (COVID-19) vaccine dose one or two recipients, the sensitivity of DBS testing increased to 97% (95% CI: 83 to 99%) and 100% (95% CI: 88 to 100%). Modeling found that DBS testing possesses a high positive predictive value (98% [95% CI: 97 to 98%]) in a population with 75% seroprevalence. We demonstrate that DBS testing should be considered to reliably detect SARS-CoV-2 seropositivity from natural infection or vaccination. IMPORTANCE Dried blood spot samples have comparable diagnostic accuracy to serum collected by venipuncture when tested by an electrochemiluminescent assay for antibodies and should be considered to reliably detect seropositivity following SARS-CoV-2 infection and/or vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , Antibody Formation , COVID-19/diagnosis , COVID-19 Vaccines , Child , Cross-Sectional Studies , Humans , Immunoglobulin G , Seroepidemiologic Studies
6.
Helicobacter ; 27(2): e12875, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35092634

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) colonizes the human gastric mucosa with a high worldwide prevalence. Currently, H. pylori is eradicated by the use of antibiotics. However, elevated antibiotic resistance suggests new therapeutic strategies need to be envisioned: one approach being prophylactic vaccination. Pre-clinical and clinical data show that a urease-based vaccine is efficient in decreasing H. pylori infection through the mobilization of T helper (Th) cells, especially Th17 cells. Th17 cells produce interleukins such as IL-22 and IL-17, among others, and are key players in vaccine efficacy. Recently, granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing Th17 cells have been identified. AIM: This study explores the possibility that GM-CSF plays a role in the reduction of H. pylori infection following vaccination. RESULTS: We demonstrate that GM-CSF+ IL-17+ Th17 cells accumulate in the stomach mucosa of H. pylori infected mice during the vaccine-induced reduction of H. pylori infection. Secondly, we provide evidence that vaccinated GM-CSF deficient mice only modestly reduce H. pylori infection. Conversely, we observe that an increase in GM-CSF availability reduces H. pylori burden in chronically infected mice. Thirdly, we show that GM-CSF, by acting on gastric epithelial cells, promotes the production of ßdefensin3, which exhibits H. pylori bactericidal activities. CONCLUSION: Taken together, we demonstrate a key role of GM-CSF, most probably originating from Th17 cells, in the vaccine-induced reduction of H. pylori infection.


Subject(s)
Bacterial Vaccines , Granulocyte-Macrophage Colony-Stimulating Factor , Helicobacter Infections , Helicobacter pylori , Animals , Bacterial Vaccines/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Helicobacter Infections/immunology , Helicobacter Infections/prevention & control , Mice , Th17 Cells , Vaccination
7.
Gut ; 71(3): 457-466, 2022 03.
Article in English | MEDLINE | ID: mdl-34253574

ABSTRACT

OBJECTIVE: In this study, we determined whether Helicobacter pylori (H. pylori) infection dampens the efficacy of cancer immunotherapies. DESIGN: Using mouse models, we evaluated whether immune checkpoint inhibitors or vaccine-based immunotherapies are effective in reducing tumour volumes of H. pylori-infected mice. In humans, we evaluated the correlation between H. pylori seropositivity and the efficacy of the programmed cell death protein 1 (PD-1) blockade therapy in patients with non-small-cell lung cancer (NSCLC). RESULTS: In mice engrafted with MC38 colon adenocarcinoma or B16-OVA melanoma cells, the tumour volumes of non-infected mice undergoing anticytotoxic T-lymphocyte-associated protein 4 and/or programmed death ligand 1 or anti-cancer vaccine treatments were significantly smaller than those of infected mice. We observed a decreased number and activation status of tumour-specific CD8+ T cells in the tumours of infected mice treated with cancer immunotherapies independent of the gut microbiome composition. Additionally, by performing an in vitro co-culture assay, we observed that dendritic cells of infected mice promote lower tumour-specific CD8+ T cell proliferation. We performed retrospective human clinical studies in two independent cohorts. In the Dijon cohort, H. pylori seropositivity was found to be associated with a decreased NSCLC patient survival on anti-PD-1 therapy. The survival median for H. pylori seropositive patients was 6.7 months compared with 15.4 months for seronegative patients (p=0.001). Additionally, in the Montreal cohort, H. pylori seropositivity was found to be associated with an apparent decrease of NSCLC patient progression-free survival on anti-PD-1 therapy. CONCLUSION: Our study unveils for the first time that the stomach microbiota affects the response to cancer immunotherapies and that H. pylori serology would be a powerful tool to personalize cancer immunotherapy treatment.


Subject(s)
Adenocarcinoma/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Colonic Neoplasms/drug therapy , Helicobacter Infections/complications , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Adenocarcinoma/microbiology , Adenocarcinoma/pathology , Animals , Cancer Vaccines/therapeutic use , Carcinoma, Non-Small-Cell Lung/microbiology , Carcinoma, Non-Small-Cell Lung/pathology , Colonic Neoplasms/microbiology , Colonic Neoplasms/pathology , Disease Models, Animal , Female , Helicobacter pylori , Humans , Lung Neoplasms/microbiology , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Retrospective Studies
8.
Vaccine ; 39(27): 3590-3601, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34049736

ABSTRACT

Helicobacter pylori (Hp) colonizes the human gastric mucosa with a high worldwide prevalence. Currently, Hp can be eradicated by the use of antibiotics. Due to the increase of antibiotic resistance, new therapeutic strategies need to be devised: one such approach being prophylactic vaccination. Pre-clinical and clinical data showed that a urease-based vaccine is efficient in decreasing Hp infection through the mobilization of T helper (Th)-dependent immune effectors, including eosinophils. Preliminary data have shown that upon vaccination and subsequent Hp infection, eosinophils accumulate in the gastric mucosa, suggesting a possible implication of this granulocyte subset in the vaccine-induced reduction of Hp infection. In our study, we confirm that activated eosinophils, expressing CD63, CD40, MHCII and PD-L1 at their cell surface, infiltrate the gastric mucosa during vaccine-induced reduction of Hp infection. Strikingly, we provide evidence that bone marrow derived eosinophils efficiently kill Hp in vitro, suggesting that eosinophils may participate to the vaccine-induced reduction of Hp infection. However, conversely to our expectations, the absence of eosinophils does not decrease the efficacy of this Hp vaccine in vivo. Indeed, vaccinated mice that have been genetically ablated of the eosinophil lineage or that have received anti-Sialic acid-binding immunoglobulin-like lectin F eosinophil-depleting antibodies, display a lower Hp colonization when compared to their eosinophil sufficient counterparts. Although the vaccine induces similar urease-specific humoral and Th responses in both eosinophil sufficient and deficient mice, a decreased production of anti-inflammatory cytokines, such as IL-10, TGFß, and calgranulin B, was specifically observed in eosinophil depleted mice. Taken together, our results suggest that gastric eosinophils maintain an anti-inflammatory environment, thus sustaining chronic Hp infection. Because eosinophils are one of the main immune effectors mobilized by Th2 responses, our study strongly suggests that the formulation of an Hp vaccine needs to include an adjuvant that preferentially primes Hp-specific Th1/Th17 responses.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Animals , Eosinophils , Gastric Mucosa , Helicobacter Infections/prevention & control , Mice , Stomach
SELECTION OF CITATIONS
SEARCH DETAIL